

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: CONCRETE TECHNOLOGY (19CE0131) Course & Branch: B.Tech - CE

Year & Sem: IV-B.Tech & I-Sem Regulation: R19

UNIT-I CEMENTS & ADMIXTURES, AGGREGATES

1		hat are Bouge's compounds? Explain in detail how each one of these compounds luences the strength and setting properties of cement.	[L1][CO1]	[12M]
2	a	Explain heat of hydration and hydration process of cement in detail.	[L2][CO1]	[6M]
4	b	Explain setting time of cement and factors effecting setting time of cement.	[L2][CO1]	[6M]
	a	Discuss about the chemical composition of Ordinary Portland cement.	[L2][CO1]	[6M]
3	b	What are the different grades of cement and explain each.	[L1][CO1]	[6M]
	a	Explain the term super plasticizers. How are they useful in concrete production?	[L2][CO1]	[6M]
4	b	Explain the advantages of using plasticizers and super plasticizers in concrete making.	[L1][CO1]	[6M]
5		efly write the significance of following properties: Specific gravity, Bulk Density, osity and Absorption & Moisture Content of Aggregate	[L2][CO1]	[12M]
6		efine the term "Bulking of aggregates". Explain its significance with reference to ncrete making. Explain the simple field test to determine the bulking of aggregates.	[L1][CO1]	[12M]
7	a	What do you mean by soundness of aggregate? Explain.	[L1][CO1]	[6M]
'	b	What is alkali-aggregate reaction? And how will it affect the concrete properties.	[L1][CO1]	[6M]
8	a	How would you grade the aggregates by conducting sieve analysis on aggregates in laboratory? Explain the procedure with appropriate table.	[L1][CO1]	[8M]
	b	Write short notes on gap graded aggregates.	[L1][CO1]	[4M]
9	Lis	at the physical properties of aggregates. Explain any two properties.	[L2][CO1]	[12M]
10		nat are all the mechanical properties of aggregates? Explain any one with perimental procedure.	[L2][CO1]	[12M]

UNIT-II

CEMENTS & ADMIXTURES, AGGREGATES

	1	What are the various factors affecting the compressive strength of concrete?	[L2][CO2]	[12M]
	2	With neat diagram, write the procedure involved in determining the split tensile	[L2][CO2]	[12M]
		strength of concrete.		[1211]
	3	Explain the various factors affecting strength of hardened concrete.	[L2][CO2]	[12M]
	4	a Explain the Maturity concept for strength development of concrete.	[L2][CO2]	[6M]
		b Explain the relation between compression strength and tensile strength of concrete.	[L2][CO2]	[6M]
	5	a Shortly explain about Gel space ratio	[L2][CO2]	[6M]
		b Explain different methods of curing procedure.	[L2][CO2]	[6M]
	6	Explain the procedure for compression test of hardened concrete	[L2][CO2]	[12M]
	7	Explain the procedure for determination of flexural strength of hardened concrete	[L2][CO2]	[12M]
	8	Explain the phenomenon of gain of strength of concrete with age.	[L1][CO2]	[12M]
9)	What is curing? What are the different methods of curing?	[L1][CO2]	[12M]
1	10	Explain the relation between compression strength and tensile strength of concrete.	[L2][CO2]	[12M]

UNIT –III ELASTICITY, CREEP & SHRINKAGE, NON-DESTRUCTIVE TESTING METHODS

1	Explain Schmidt's Rebound Hammer test and the limitations and applications of the	[L2][CO4]	[12M]
	same.		
2	Explain the various pulse velocity methods and the techniques measuring the	[L2][CO4]	[12M]
	pulse velocity through concrete.		
3	Explain in detail about the rebound hammer test (NDT) that is conducted on	[L2][CO4]	[12M]
	existing structure to assess its strength with a neat diagram.		
4	Explain Creep of concrete and relation between creep and time.	[L2][CO3]	[12M]
5	How the shrinkage of concrete is classified? And explain each one of them briefly.	[L1][CO3]	[12M]
6	Explain the procedure to conduct Modulus of elasticity test in the laboratory	[L2][CO3]	[12M]
	and explain the various factors affecting the modulus of elasticity.		
7	Write the procedure involved in conducting pullout test. Write its significance.	[L1][CO4]	[12M]
8	a What is shrinkage of concrete?	[L1][CO3]	[6M]
	b Explain the various factors affecting shrinkage of concrete.	[L2][CO3]	[6M]
9	a What are the factors that affect the creep and shrinkage of concrete?	[L1][CO3]	[6M]
	b How will you find the reinforcement's location and dimension using profometer.	[L1][CO3]	[6M]
	Explain briefly.		
10	Explain the procedure for UPV and Rebound hammer test.	[L2][CO4]	[12M]

Course Code: 19CE0131

UNIT-IV

PERMEABILITY AND DURABILITY

1	Explain about factors affecting permeability of concrete.	[L2][CO5]	[12M]
2	How the performance of concrete is affected by acid attack. Write briefly.	[L2][CO5]	[12M]
3	Which are all the effects of Sulphate attack on concrete? Explain briefly.	[L2][CO5]	[12M]
4	What are the methods of controlling sulphate attack, Explain Briefly.	[L2][CO5]	[12M]
5	Do you think the sea water affect the strength of concrete? If yes, explain how?	[L2][CO5]	[12M]
6	Explain briefly about chloride attack on concrete	[L2][CO5]	[12M]
7	Explain the phenomenon of corrosion in steel. Suggest the methods for corrosion	[L2][CO5]	[12M]
	control.		
8	How would you improve the quality of concrete by doing surface treatment. Explain	[L2][CO5]	[12M]
	with appropriate examples.		
9	Write briefly about deterioration of concrete by Abrasion, Erosion and Cavitation.	[L1][CO5]	[12M]
10	Write and explain the effects of materials on durability.	[L2][CO5]	[12M]

UNIT-V

MIX DESIGN

1	Design a concrete mix of M20 grade for a roof slab. Take a standard deviation of	[L3][CO6]	[10M]
	4MPa. The specificgravities of Coarse Aggregate and Fine Aggregate are 2.67 and		
	2.73 respectively. The bulk density of coarse aggregate is 16020 Kg/m ³ and		
	Fineness Modulus of Fine Aggregate is 2.76. A slump of 50mm is necessary. The		
	water absorption of coarse aggregate is 1% and free moisture in fine aggregate is		
	3%. Design the concrete mix using ACI method. Assume any missing data suitably.		
3	Explain the mix design procedure of concrete as per ACI code Method. Design a M25 concrete mix using IS method of Mix Design for the following data:	[L2][CO6]	[10M]
3	Design a M35 concrete mix using IS method of Mix Design for the following data:	[L3][CO6]	[IUNI]
	1) Maximum size of aggregate - 20mm (Angular)		
	2) Degree of workability - 0.90 compaction factor.		
	3) Quality control - good		
	4) Type of exposure - mild		
	5) Specific Gravity A. Cement - 3.12 (B. Sand - 2.63 (C.		
	Coarse aggregate - 2.666) Water absorption: A. Coarse		
	aggregate - 0.5% (B. Fine aggregate - 1.0%		
	7) Free surface moisture: (A. Coarse aggregate - Nil (B.		
	Fine aggregate - 2.2%8) Sand confirms to Zone I grading.		
	Assume any other data required suitably.		
4	Design a M30 concrete mix using IS method of Mix Design for the following data:	[L3][CO6]	[10M]
	1) Maximum size of aggregate - 20mm (Angular).		
	2) Degree of workability - 0.90 compaction factor.		
	3) Quality control - good		
	4) Type of exposure - severe		
	5) Specific Gravity: A. Cement - 3.10 B. Sand - 2.68 C. Coarse aggregate - 2.69		
	6) Water absorption: A. Coarse aggregate -1.0% B. Fine aggregate - 2.0%		
	7) Free surface moisture: A. Coarse aggregate- Nil B. Fine aggregate- 2.0%		
	8) Sand confirms to zone III grading.		
	Assume any other data required suitably		

Course Code: 19CE0131

5	a	Define the term "Mix Design of Concrete" and explain its significance.	[L1][CO6]	[5M]
	b	Briefly discuss various methods of the mix design available in literature.	[L2][CO6]	[5M]
6	Br	ief explain about factors affecting choice of mix design.	[L2][CO6]	[10M]
7	Ex	plain quality control of concrete and durability of concrete.	[L2][CO6]	[10M]
8	Ex	plain the mix design procedure of concrete as per IS code Method.	[L2][CO6]	[10M]
9	W	hat are the factors considered in Mix Proportions? Explain Briefly.	[L1][CO6]	[10M]
10	a	Define the term "Mix Design of Concrete" and explain its significance.	[L1][CO6]	[5M]
	b	Briefly discuss various methods of the mix design available in literature.	[L2][CO6]	[10M]

PREPARED BY: C. SAILAJA,

Asst. Professor, CE